Poster **PA-048**

Characterization of Extended Treatment Benefit From Three Phase 1 and 3 Clinical Trials Examining Patients With Folate Receptor Alpha–Positive Recurrent Ovarian Cancer Treated With Single-Agent Mirvetuximab Soravtansine

Ana Oaknin,¹ Domenica Lorusso,² Amit Oza,³ Nicoletta Colombo,⁴ Toon Van Gorp,⁵ David M. O'Malley,⁶ Susana Banerjee,⁷ Conleth G. Murphy,⁸ Philipp Harter,⁹ Gottfried Konecny,¹⁰ Marie-Christine Kaminsky,¹¹ Michael Method,¹² Jiuzhou Wang,¹² Robert L. Coleman,¹³ Michael J. Birrer,¹⁴ Ursula A. Matulonis,¹⁵ Kathleen N. Moore¹⁶ ¹Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebr Oncology, Milan, Italy; ⁵University Hospital Leuven, Division of Gynaecological Oncology, Columbus, OH, USA; ⁷The Royal Marsden Hospital, London, England; ⁸Bon Secours Cork and Cancer Trials Ireland; ⁹Kliniken Essen Mitte Evang, Gynecology and Gynecologic Oncology, Essen, Germany; ¹⁰Department of Medicine, University of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angeles, CA, USA; ¹⁴Winthrop P. Rockefeller of California at Los Angel Cancer Institute, University of Arkansas Medical School, Little Rock, AR, USA; ¹⁵Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁶College of Medicine, The University of Oklahoma, Oklahoma City, OK, USA

BACKGROUND

- Treatment options for platinum-resistant ovarian cancer (PROC) are limited, consisting primarily of single-agent chemotherapy^{1,2}
- Single-agent chemotherapy has limited activity (ORR, 4%-13%) along with considerable toxicity³⁻⁶
- Folate receptor alpha (FR α ; FOLR1 gene) has limited expression on normal tissues but is elevated in most ovarian cancers, which makes FR α an attractive target for the development of novel therapies^{7,8}
- Mirvetuximab soravtansine (MIRV) is an antibody-drug conjugate (ADC) comprising an FR α -binding antibody, cleavable linker, and a maytansinoid DM4 payload, a potent tubulin-targeting agent⁹
- Treatment with MIRV demonstrated clinically meaningful antitumor activity and a favorable safety profile in patients with FR α -positive^a ovarian cancer^{10,11}

^aAntitumor activity with MIRV has been shown with single-agent MIRV in FR α -positive PROC (\geq 75% tumor cells FR α positive by PS2+)¹⁰ and in combination with other agents in FR α -expressing EOC (\geq 25% tumor cells FR α -positive by PS2+).¹¹

Objective

Here we report findings from a retrospective pooled analysis of patients who achieved extended treatment benefit (ETB; define as patients with PFS >12 months per investigator assessment) with MIRV monotherapy in the IMGN853-0401 (phase 1),¹² FORWARD I (phase 3),¹³ and SORAYA (phase 3)¹⁴ clinical trials

Methods

- Efficacy and safety data were collected from 466 patients in 3 clinical MIRV monotherapy studies (IMGN853-0401, FORWARD I, and SORAYA)
- The ETB analysis of efficacy also included ORR (by RECIST v1.1) and DOR per investigator assessment
- FR α expression levels were evaluated by immunohistochemistry^a
- 38 of 40 patients (95%) received intravenous MIRV at 6 mg/kg, adjusted ideal body weight,^b every 3 weeks until disease progression or unacceptable toxicity

aln IMGN853-0401 (phase 1) and SORAYA, FR α scoring was by PS2+ with percentage of viable tumor cells with \geq 2+ staining intensity.^{10,15} In FORWARD I, FR α expression was scored as the percentage of tumor cells with any FR α membrane staining visible at $\leq 10 \times$ microscope objective.^{16 b}Two patients from IMGN853-0401 (phase 1) escalation received 1.8 and 2.0 mg/kg, days 1, 8, and 15 of a 4-week schedule.

Table 1. Clinical Studies in the ETB Analysis

	IMGN853-0401 phase 1 trial ¹²	FORWARD I phase 3 trial ¹³	SORAYA phase 3 trial ¹⁴
ClinicalTrials.gov identifier	NCT01609556	NCT02631876	NCT04296890
Design/description	First-in-human study with single-agent MIRV ^a Open-label, nonrandomized, dose-escalation and dose-expansion trial	Comparison of single-agent MIRV with investigator's choice of chemotherapy ^b Open-label randomized trial	Single-arm trial with single-agent MIRV ^c Open-label nonrandomized trial
Patients in ETB analysis, n	4	12	24

In patients with relapsed or refractory ovarian cancer or other FR α -expressing solid tumors. bIn patients with FR α -expressing, platinum-resistant EOC with \leq 3 prior systemic anticancer therapies. ^cIn patients with bevacizumab-pretreated, FR α -positive, platinum-resistant, advanced, high-grade EOC with 1 to 3 prior systemic anticancer therapies.

Baseline Demographics and Clinical Characteristics

Table 2. Baseline Demographics and Clinical Characteristics in Patients With ETB

Characteristic		Patients with ETB (N=40)
Age, median (range)	Age in years	63 (48-81)
Primary cancer diagnosis, n (%)	Epithelial ovarian cancer Fallopian tube cancer Primary peritoneal cancer	30 (75) 2 (5) 8 (20)
Stage at initial diagnosis, n (%)	IIIA IIIB IIIC III IV	2 (5) 2 (5) 18 (45) 11 (28) 7 (18)
ECOG PS, n (%)	0 1	24 (60) 16 (40)
No. of prior systemic therapies, n (%)	1 2 3	22 (55) 17 (43) 1 (3)
Prior exposure, n (%)	Bevacizumab PARPi	24 (60) 21 (53)
Platinum-free interval, n (%)	0-3 mo 3-6 mo ≥6 mo	9 (23) 22 (55) 9 (23)
FR α expression, n (%)	0%-24% 25%-49% 50%-74% 75%+ Missing	2 (5) 3 (8) 6 (15) 27 (68) 2 (5)

Results: Response Rates

Patients with ETB had an ORR of 77.5%, with 10 (25.0%) achieving a complete response and 21 (52.5%) achieving a partial response

Patients without at least 1 postbaseline RECIST assessment were treated as not evaluable

Results: Progression-Free Survival

ECIST v1.1. Response Evaluation Criteria in Solid Tumors, version 1.1: SD, stable disease: TRAEs, treatment-related adverse events Acknowledgements: Mirvetuximab soravtansine is an investigational agent. Studies described here were sponsored by ImmunoGen, Inc. Copies of this poster including those obtained through Ouick Response [OR] Code) are for personal use only and may not be reproduced without permission from ESGO or the authors of this poste (Basel). 2021;13(7):1663. 2. McClung EC, Wenham RM. Int J Womens Health. 2016;8:59-75. 3. Pujade-Lauraine E, et al. J Clin Oncol. 2021;163(2):237-245. 5. Hamanishi J, et al. J Clin Oncol. 2021;39(33):3671-3681. 6. Pujade-Lauraine E, et al. Lancet Oncol. 2021;22(7):1034-1046. 7. Birrer MJ, et al. Oncologist. 2019;24(4):425-429. 8. Zamarin D, et al. J Immunother Cancer. 2020;8(1):e000829. doi:10.1136/jitc-2020-000829. 9. Moore KN, et al. Cancer; March 18-21, 2022; Phoenix, AZ. LBA4. 11. O'Malley DM, et al. Gynecol Oncol.

Results: Safety					
Table 4. Treatment-Related Adverse Events (≥20%, All Grades) (N=40)					
TRAEs, n (%)	All grades	Grade 3+			
Blurred vision	24 (60)	0			
Fatigue	20 (50)	1 (3)			
Nausea	20 (50)	0			
Keratopathy ^a	16 (40)	1 (3)			
Dry eye	14 (35)	0			
Peripheral neuropathy ^b	14 (35)	0			
Diarrhea	13 (33)	0			
Visual acuity reduced	10 (25)	2 (5)			
Increased ALT	9 (23)	1 (3)			
Increased AST	9 (23)	1 (3)			
Asthenia	9 (23)	0			
Cataract	8 (20)	6 (15)			
Headache	8 (20)	0			
Neutropenia	8 (20)	1 (3)			
Photophobia	8 (20)	0			
Pneumonitis	8 (20)	0			
Thrombocytopenia	8 (20)	0			
The grouped term "Keratopathy" includes the following preferred terms: corneal cyst, corneal disorder, corneal epithelial microcysts, keratitis, keratopathy, limbal stem cell					

deficiency, corneal opacity, corneal erosion, corneal pigmentation, corneal deposits, keratitis interstitial, and punctate keratitis. ^bThe grouped term "Peripheral Neuropathy includes the following preferred terms: neuropathy peripheral, peripheral sensory neuropathy, peripheral motor neuropathy, paresthesia,

- The most common TRAEs included blurred vision (60%), fatigue (50%), and nausea (50%)
- Peripheral neuropathy was present in 35% of patients (no grade 3+ events); pneumonitis occurred in 20% of patients (no grade 3+ events)
- Keratopathy was present in 40% of patients (grade 3 event in 1 patient that resolved within 20 days)
- Grade 3 visual acuity reduction was present in 2 patients, both with grade 3 cataracts. Grade 3 cataracts were present in 6 patients (15%) with a median age of 68 years (range 55-70 years); this was resolved in 5/6 patients and ongoing without surgery in 1 patient
- TRAEs led to:
- Dose delay in 65%, reduction in 48%, and discontinuation in 15% of patients

CONCLUSIONS

- In a pooled analysis of 466 patients, MIRV monotherapy showed ETB in 40 patients (9%)
- Most patients with ETB had stage III EOC (83%), 1 prior line of therapy (55%), prior bevacizumab exposure (60%), and prior PARPi exposure (53%) - ETB occurred in patients with a wide range of FR α expression but did so
- predominantly among those with high FR α expression
- ETB was observed among patients with CR, PR, and SD; ETB was not restricted to patients demonstrating CR
- In patients with ETB, the overall adverse event profile is consistent with the previously reported ISS of 464 patients,¹⁷ with no new safety signals identified
- Adverse events were primarily low-grade gastrointestinal and ocular events that generally resolved with supportive care or, if needed, dose modifications
- The safety profile of MIRV in these patients suggests minimal cumulative toxicity
- The efficacy and safety outcomes in patients with long-term use supports MIRV's potential to become a new standard of care for FR α -expressing ovarian cancer

TB, extended treatment benefit; FOLR1, folate receptor 1; FRα, folate receptor 1; FRα, folate receptor alpha; ISS, integrated safety summary; MIRV, mirvetuximab soravtansine; ORR, objective response; PROC, platinum-resistant ovarian cancer; PS2+, positive staining intensity ≥2;

020;157(2):379-385. 12. ClinicalTrials.gov identifier: NCT01609556. Updated February 17, 2021. Accessed October 11, 2022. https://clinicaltrials.gov/ct2/show/NCT02631876. 14. ClinicalTrials.gov identifier: NCT02631876. 14. ClinicalTrials.gov identifier: NCT02631876. Updated October 11, 2022. https://clinicaltrials.gov/ct2/show/NCT02631876. 14. ClinicalTrials.gov/ct2/show/NCT02631876. 14. ClinicalTrials.gov identifier: NCT04296890. Updated September 21, 2022. Accessed October 11, 2022. https://clinicaltrials.gov/ct2/show/NCT04296890. 15. Moore KN, et al. J Clin Oncol. 2017;35(10):1112-1118. 16. Moore KN, et al. Presented at: American Society of Clinical Oncology 2022 Annual Meeting; June 3-7, 2022; Chicago, IL. Abstract 5574.

