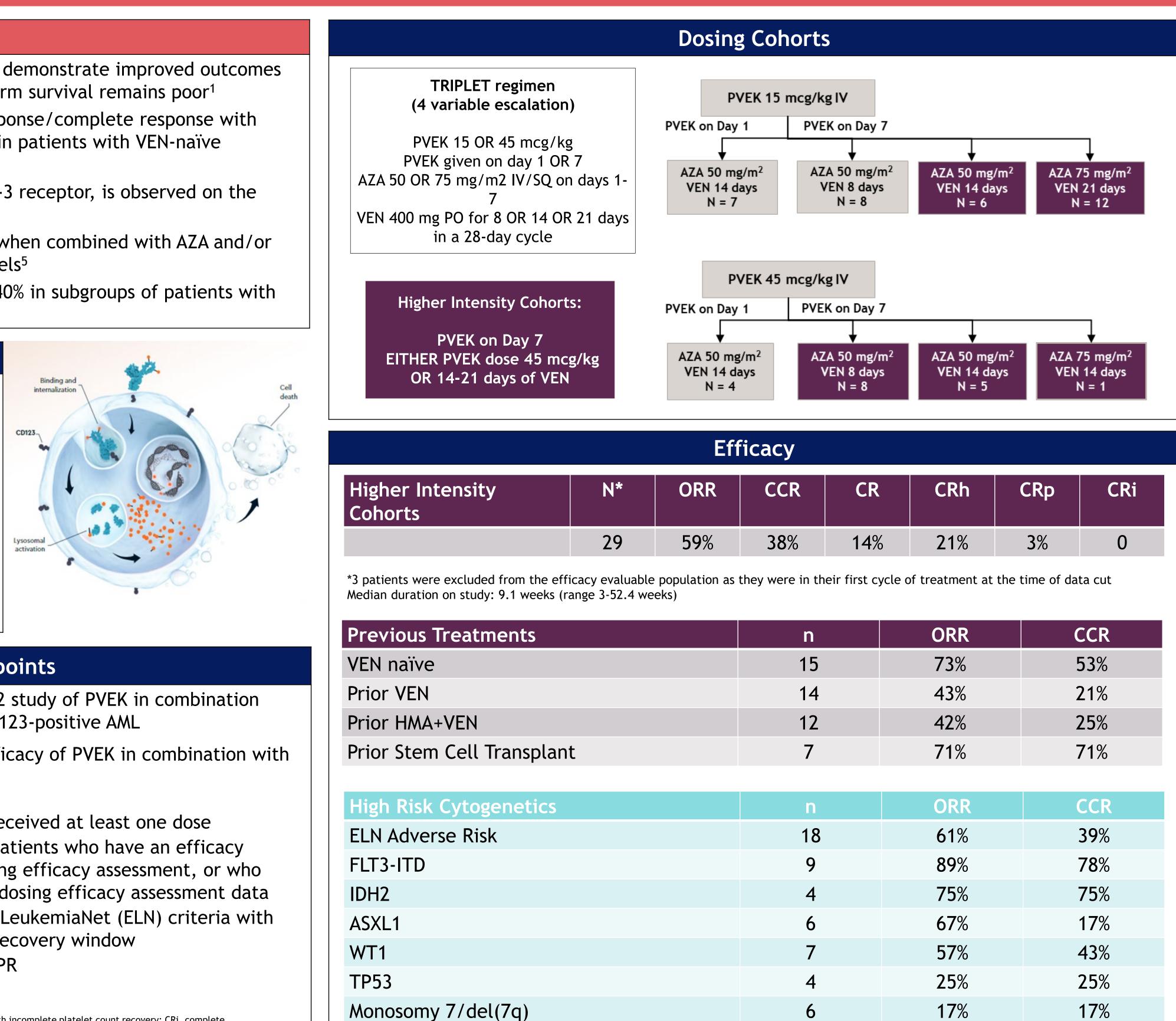
Poster **AML-262**

Pivekimab sunirine (PVEK) triplet with azacitidine and venetoclax shows broad activity in adverse genetic subsets of relapsed/refractory AML and reduced infusion related reactions

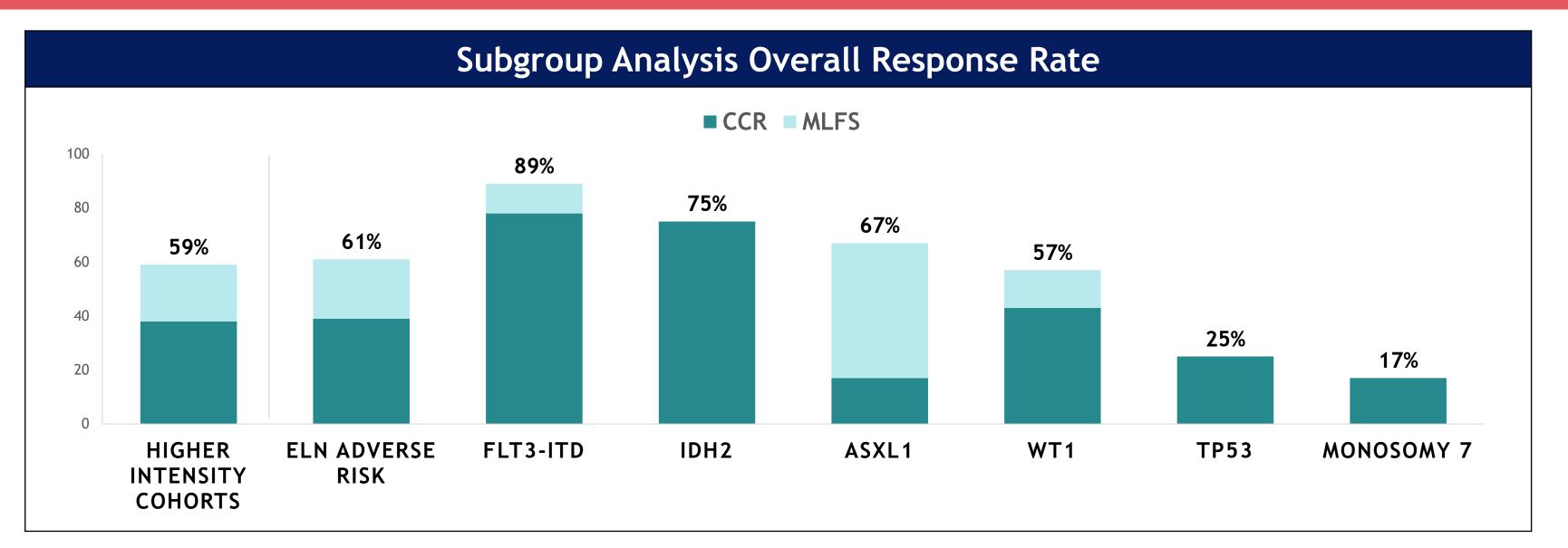

Naval Daver, MD¹, Pau Montesinos, MD PhD², Ahmed Aribi, MD³, Giovanni Martinelli, MD⁴, Jessica K. Altman, MD⁵, Eunice S. Wang, MD⁶, Gail J. Roboz, MD⁷, Patrick W. Burke, MD⁸, Gianluca Gaidano, MD⁹, Roland B. Walter, MD PhD MS¹⁰, Xavier Thomas, MD PhD¹¹, Deepa Jeyakuma, MD¹², Daniel J. DeAngelo, MD PhD¹³, Harry Erba, Md PhD¹⁴, Elisabetta Todisco, MD PhD²⁵, Norbert Vey, MD²⁴, Christian Recher, MD PhD²⁵, Thomas Longval, MD²⁶, Uwe Platzbecker, MD²⁷, Silke Kapp-Schwörer, MD²⁸, Christoph Schliemann, MD²⁹, Marina Konopleva, MD PhD³¹, Kendra Sweet, MD³², Guido Marcucci, MD³, Giovanni Marconi, MD⁴, Hagop Kantarjian, MD¹, Callum M. Sloss, PhD³¹, Kara E. Malcom, RN³¹, Patrick A. Zweidler-McKay, MD PhD³¹, Kendra Sweet, MD³² ¹MD Anderson Cancer Center, Houston TX; ²Hospital University, Chicago IL; ⁶Roswell Park Comprehensive Cancer Center, New York, NY; ⁸University of Michigan, Ann Arbor, MI; ⁹University of Hope, Duarte CA; ⁴ Institute of Hematology "L.e A. Seragnoli," Bologna, Italy; ¹⁰Fred Hutchinson Cancer Research Center, New York, NY; ⁸University of Michigan, Ann Arbor, MI; ⁹University of Hope, Duarte CA; ⁴ Institute of Hematology "L.e A. Seragnoli," Bologna, Italy; ¹⁰Fred Hutchinson Cancer Research Center, New York, NY; ⁸University of Michigan, Ann Arbor, MI; ⁹University of Michigan, Ann Arbor, MI; ⁹University, Chicago IL; ⁶Roswell Park Comprehensive Cancer Center, New York, NY; ⁸University of Michigan, Ann Arbor, MI; ⁹University of Michigan, Ann Arbor, MI; ⁹University of Michigan, Ann Arbor, MI; ⁹University, Chicago IL; ⁶Roswell Park Comprehensive Cancer Center, New York, NY; ⁸University, Chicago IL; ⁶Roswell Park Comprehensive Cancer Center, New York, NY; ⁸University, Chicago IL; ⁶Roswell Park Comprehensive Cancer Center, New York, NY; ⁸University, Chicago IL; ⁶Roswell Park Comprehensive Cancer Center, New York, NY; ⁸University, Chicago IL; ⁶Roswell Park Comprehensive Cancer Center, New York, NY; ⁸University, Chicago IL; ⁶R Seattle, WA; ¹¹Hospices Civils de Lyon, Lyon-Sud Hospital, Lyon, France; ¹²University, Durham NC; ¹⁵ European Institute, Cleveland, OH; ¹⁸ Antoine Lacassagne Hospital, Nice, France; ¹⁹MD Anderson Cancer Center, MA; ¹⁴Duke University, Durham NC; ¹⁵ European Institute, Cleveland, OH; ¹⁸ Antoine Lacassagne Hospital, Nice, France; ¹⁹MD Anderson Cancer Center, MA; ¹⁴Duke University, Durham NC; ¹⁵ European Institute, Cleveland, OH; ¹⁸ Antoine Lacassagne Hospital, Nice, France; ¹⁹MD Anderson Cancer Center, MA; ¹⁴Duke University, Durham NC; ¹⁵ European Institute, Cleveland, OH; ¹⁸ Antoine Lacassagne Hospital, Nice, France; ¹⁹MD Anderson Cancer Center, Madrid, Spain; ²⁰IRCCS Azienda ospedaliero. Universitaria di Bologna, Bologna, Bologna, Italy; ²¹Beth Israel Deaconess Medical Center, Boston MA; ²²Churchill Hospital, Headington, Oxford, UK; ²³Hôspital Saint-Louis, Paris, France; ²⁴Institute Paoli-Calmettes, Marseilles, France; ²⁵CHU de Toulouse, Toulouse, France; ²⁴Institute Paoli-Calmettes, Marseilles, France; ²⁴Institute Paoli-Calmettes, Marseilles, France; ²⁴Institute Paoli-Calmettes, Marseilles, France; ²⁵CHU de Toulouse, France; ²⁴Institute Paoli-Calmettes, Marseilles, France; ²⁴Institute, Paoli-Calmettes, Marseilles, France; ²⁴Institute, Paoli-Calmettes, Marseilles, France; ²⁴Institute, Paoli-Calmettes, ³⁰University Hospital Muenster, Muenster, Germany; ³¹ImmunoGen, Inc. Waltham, MA; ³²H. Lee Moffitt Cancer Center, Tampa, FL

INTRODUCTION

- Hypomethylating agents (HMA) and venetoclax (VEN) demonstrate improved outcomes in frontline older/unfit patients with AML but long-term survival remains poor¹
- HMA combined with VEN have reported complete response/complete response with incomplete count recovery (CR/CRi) rates of 20-42% in patients with VEN-naïve relapsed/refractory (R/R) AML^{2,3}
- Overexpression of CD123, the alpha subunit of the IL-3 receptor, is observed on the majority of AML blast cells⁴
- Preclinical data have demonstrated synergy of PVEK when combined with AZA and/or VEN, including in AZA/VEN resistant murine AML models⁵
- PVEK demonstrated single-agent CR/CRi rates of 22-40% in subgroups of patients with R/R AML⁶

PVEK Background

- PVEK, also known as IMGN632, is a CD123-targeting antibody-drug conjugate (ADC) comprised of a highaffinity antibody coupled to a DNA-alkylating payload of the novel indolinobenzodiazepine pseudodimer (IGN) class
- The IGN payload alkylates DNA and causes single strand breaks without crosslinking. IGNs are designed to have high potency against tumor cells, while demonstrating less toxicity to normal marrow progenitors than other DNA-targeting payloads⁷


Study Design and Endpoints

IMGN632-0802 is an open-label, multicenter, Phase 1b/2 study of PVEK in combination with AZA + VEN in patients with relapsed/refractory CD123-positive AML

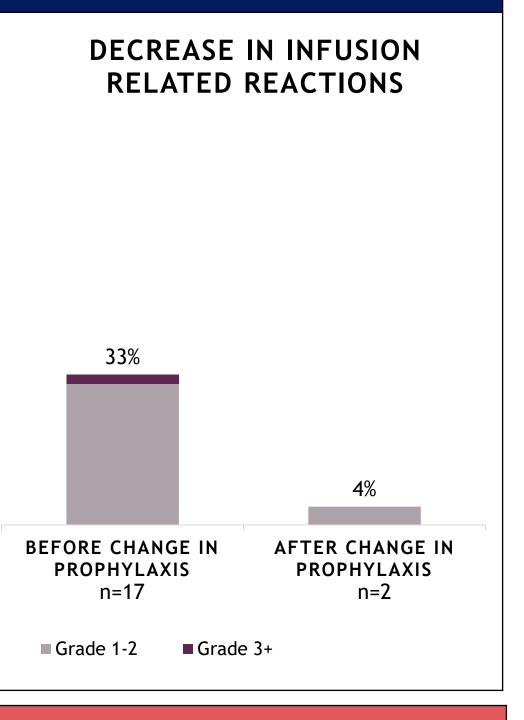
- Primary objective is to determine the safety and efficacy of PVEK in combination with AZA + VEN in patients with R/R AML
- Safety population is defined as all patients who received at least one dose - Efficacy-evaluable patients included all treated patients who have an efficacy assessment at baseline and at least one post-dosing efficacy assessment, or who died within 28 days of first dose and had no post-dosing efficacy assessment data
- Responses were determined using 2017 European LeukemiaNet (ELN) criteria with the addition of CRh and CRp and a 14-day count recovery window
- ORR is defined as CR + CRh + CRp + CRi + MLFS + PR
- CCR is defined as CR + CRh + CRp + CRi

CR, complete response; CRh, complete response with partial hematologic recovery; CRp, complete response with incomplete platelet count recovery; CRi, complete esponse with incomplete count recovery; MLFS, morphologic leukemia-free state; PR, partial response

ORR	CCR
73%	53%
43%	21%
42 %	25%
71%	71%
ORR	CCR
61%	39 %
89 %	78 %
75%	75%
67%	17%
57 %	43%
25%	25%
17%	17%

Treatment Emergent Adverse Events (TEAEs) N=51	All Grades*	Gr 3	Gr 4
Infusion Related Reactions (IRRs)	33%	-	2%
Febrile Neutropenia	31%	24%	2%
Dyspnea	28%	8%	-
Fatigue	28 %	-	-
Hypophosphatemia	26 %	2%	-
Diarrhea	22%	-	-
Hypokalemia	22%	-	2%
Nausea	22%	-	-
Vomiting	22%	-	-
Pneumonia [†]	20%	12%	2%
*reported in \ge 20 of patients; [†] one patient with grade 5 pneumonia			

- patients with relapsed/refractory AML
- Prophylactic steroids added on day -1 have significantly reduced IRRs. After change in prophylaxis, all IRRs observed were grade 1-2 and resolved with limited intervention
- warrants further investigation
- Expansion cohorts are now enrolling for patients with newly diagnosed AML (NCT04086264)


. DiNardo, CD; NEJM (2020); 2. DiNardo, CD; Lancet Haematol (2020); 3. Stahl, M; Blood Adv (2021); 4. Gill, S; Blood (2014); 5. Kuruvilla, VM; Blood (2020); 6. Daver, N; *Blood* (2020); 7. Kovtun, Y; *Blood Adv* (2018)

Safety

No tumor lysis syndrome, venoocclusive disease, capillary leak, or cytokine release syndrome observed

Prior to change in steroid prophylaxis, IRRs primarily consisted of chills/rigors; one patient with grade 4 IRR (dyspnea, hypotension) and resolved without sequelae

- Initial IRR prophylaxis: 1 dose of dexamethasone (8 mg) on the day of PVEK administration
- New IRR prophylaxis: 2 doses of dexamethasone (8 mg) on the day prior and 1 dose on the day of PVEK administration
- Only 2 patients experienced an IRR after prophylaxis update

CONCLUSIONS

PVEK triplet with AZA+VEN demonstrates anti-leukemic activity across multiple high-risk genetic subsets of

PVEK triplet with AZA+VEN is a promising anti-leukemic combination with a manageable safety profile that