IMGC936, an investigational ADAM9-targeting antibody drug conjugate, is active Abstract against patient-derived ADAM9-expressing xenograft models 1841

Olga Ab¹, Juniper A. Scribner², Kerstin Sinkevicius¹, Deryk Loo², Stuart W. Hicks¹, Francine Z. Chen², Christopher Espelin¹, Marian Themeles¹, Ying Li², Chet Bohac³, Patrick Zweidler-McKay¹, Paul A. Moore³, Callum Sloss¹, Ezio Bonvini³, Eric H. Westin¹ ¹ImmunoGen, Inc., Waltham, MA, ²MacroGenics, Inc., Brisbane, CA, ³MacroGenics, Inc., Rockville, MD

INTRODUCTION

ADAM9 is a cell surface protein that belongs to the ADAM (a disintegrin and metalloproteinase) family of proteases, which have been implicated in cytokine and growth factor shedding, and cell migration. Dysregulation of ADAM9 has been involved in tumor progression and metastasis, as well as pathological neovascularization. We have previously shown that ADAM9 is overexpressed in multiple solid tumor indications and that anti-ADAM9 antibodies are efficiently internalized and degraded by tumor cell lines making ADAM9 an attractive target for antibody-drug conjugate (ADC) development^{1,2}.

IMGC936 is an investigational ADAM9-targeting ADC, comprised of a high-affinity humanized monoclonal antibody site-specifically coupled to DM21 at a drug-antibody ratio (DAR) of 2. DM21 is a next-generation linker-payload that combines a maytansine-derived microtubuledisrupting payload with a stable tripeptide linker. IMGC936 is being investigated in a phase 1 dose escalation study evaluating safety and pharmacokinetics in patients with solid tumors (NCT04622774).

Here we explore ADAM9 expression and prevalence in solid tumors and evaluate the activity of IMGC936 in clinically relevant patient-derived xenograft (PDX) models with ADAM9 expression similar to that observed in human solid tumors.

Human Solid Tumor Tissue Overall tumor expression ADAM9 expression by individual tumor types TNBC Pancreatic 101-200 1-100 nof tun 6 of tun 70 10 10 INBC n=20 n=20 n=15 INBC n=20 n=15 ancreatic n=10 gastric n=15 Individual samples Individual samples Patient Derived Xenograft (PDX) Models Used for the Efficacy Study TNBC Pancreatic Human tumor tissues: ADAM9 is expressed in a wide range of solid tumors ADAM9 expression is highly heterogenous both within and across indications Infrequent incidence of ADAM9 negative tumors • PDX models used for the efficacy study had ADAM9 expression similar to that of the majority of human tumors

ADAM9 Expression by IHC

2021 AACR Annual Meeting.

©2021 ImmunoGen, Inc., Waltham MA, USA and MacroGenics, Inc., Rockville MD & Brisbane CA, USA

References: ¹AACR 2017, abstract 38, ²AACR 2019, abstract 1538

PDX Efficacy Study, Summary						
/ре	Model	Treatment	Stage	H-Score	Outcome	Response Rate
	* CTG-0437	Not available	111	202	Highly active	
	CTG-2488	Pretreated	Not available	108	Highly active	
	CTG-1883	Naïve	IV	78	Highly active	6/7 (86%)
	CTG-2353	Naïve	Ш	209	Active	
	* CTG-2518	Pretreated	Not available	173	Active	
	CTG-2215	Pretreated	Not available	65	Active	
	CTG-0012	Pretreated	IV	155	Inactive	
ancer	* CTG-1983	Naïve	Not available	203	Active	6/8 (75%)
	CTG-1485	Pretreated	IV	190	Active	
	CTG-0889	Naïve	IV	185	Active	
	* CTG-0780	Pretreated	iv	183	Active	
	CTG-0723	Pretreated	IV	170	Active	
	CTG-1149	Pretreated	IV	162	Active	
	CTG-0306	Pretreated	IV	205	Inactive	
	CTG-1057	Pretreated	IV	158	Inactive	
cer	* CTG-1868	Pretreated	Not available	195	Active	
	CTG-1234	Pretreated	IV	185	Active	
	CTG-0707	Not available	ш	176	Active	4/8 (50%)
	* CTG-0146	Naïve	I	127	Active	
	CTG-0936	Pretreated	IV	226	Inactive	
	CTG-0148	Naïve	ш	85	Inactive	
	CTG-0485	Not available	111	77	Inactive	
	CTG-0353	Not available	Not available	41	Inactive	
-	* CTG-2533	Pretreated	iv	224	Highly active	
	* CTG-0743	Naïve	IV	190	Highly active	
	CTG-0165	Pretreated	IV	182	Highly active	8/12 (67%)
	CTG-2539	Pretreated	IV	160	Highly active	
	CTG-0765	Naïve	III	147	Highly active	
	CTG-0192	Pretreated	IV	163	Active	
	CTG-1680	Pretreated	IV	157	Active	
	CTG-1342	Pretreated	IV	87	Active	
	CTG-1502	Pretreated	III	211	inactive	
	CTG2540	Pretreated	Ш	187	inactive	
	CTG-2536	Pretreated	IV	177	inactive	
	CTG-0838	Pretreated	IV	27	inactive	

* Models shown, panel to the left

The efficacy study was performed at Champions Oncology, Rockville, MD

Mice bearing PDX tumors were dosed once at 100 µg DM21/kg or 8.6 mg Ab/kg

Anti-tumor activity was defined by National Cancer Institute standards: mean percent Tumor/Control (%T/C) value > 42% (inactive), ≤ 42% (active), and <10% (highly active)

CONCLUSIONS

ADAM9 is expressed in multiple tumor types, including TNBC, pancreatic, gastric, and

The expression is highly heterogeneous, both within and across tumor types; very few tumors are ADAM9-negative

IMGC936 showed compelling anti-tumor activity against PDX models with clinically relevant levels and heterogeneity of ADAM9 expression

IMGC936 was active to highly active (using the NCI standard evaluation criteria) against 69% of PDX models after a single dose of 8.6 mg/kg (100 µg/kg of DM21 payload); the dose was well tolerated

These data support the current clinical evaluation of IMGC936 (NCT04622774)