# IMGC936, a first in-class ADAM9-targeting antibody-drug conjugate, demonstrates promising anti-tumor activity

Stuart W. Hicks<sup>1</sup>, Deryk Loo<sup>2</sup>, Kerstin Sinkevicius<sup>1</sup>, Juniper A. Scribner<sup>2</sup>, Bhaswati Barat<sup>3</sup>, Nicholas C. Yoder<sup>1</sup>, Christopher Espelin<sup>1</sup>, Francine Z. Chen<sup>2</sup>, Marian Themeles<sup>1</sup>, Jacquelynn Lucas<sup>1</sup>, Jennifer G. Brown<sup>3</sup>, Bahar Matin<sup>1</sup>, Megan E. Fuller<sup>1</sup>, Jenny Lee<sup>1</sup>, Paulin L. Salomon<sup>1</sup>, Juliet Costoplus<sup>1</sup>, Sadiqa Yancey<sup>1</sup>, Gundo Diedrich<sup>3</sup>, Sergey Gorlatov<sup>3</sup>, Thomas Son<sup>2</sup>, Christina Wolff<sup>3</sup>, Michael Chiechi<sup>2</sup>, Pam Li<sup>2</sup>, Michael Spliedt<sup>3</sup>, Valentina Ciccarone<sup>3</sup>, Jeff Hooley<sup>2</sup>, Nadia Gantt<sup>3</sup>, James Tamura<sup>3</sup>, Kerry A. Donahue<sup>1</sup>, Paul A. Moore<sup>3</sup>, Syd Johnson<sup>3</sup>, Thomas Chittenden<sup>1</sup>, Richard Gregory<sup>1</sup>, Ezio Bonvini<sup>3</sup> <sup>1</sup>ImmunoGen, Inc., Waltham, MA, <sup>2</sup>MacroGenics, Inc., Brisbane, CA, <sup>3</sup>MacroGenics, Inc., Rockville, MD

Abstract

1533



2019 AACR Annual Meeting. April 1, 2019

| eters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dose Group<br>(mg/kg) | Cmax<br>(µg/mL) | AUC∝<br>(hr*µg/mL) | T <sub>1/2</sub><br>(hr) | Cl<br>(mL/hr/kg) | Vss<br>(mL/kg) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|--------------------|--------------------------|------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                    | 312 ± 41.2      | 48200 ± 11900      | 166 ± 54.2               | 0.223 ± 0.0745   | 48.1 ± 9.52    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.5                  | 985 ± 196       | 154000 ± 59300     | 192 ± 70.2               | 0.162 ± 0.0491   | 40.7 ± 6.29    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                    | 325 ± 53.5      | 48200 ± 13800      | 166 ± 59.1               | 0.223 ± 0.0625   | 49.9 ± 12.2    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.5                  | 912 ± 217       | 133000 ± 33200     | 190 ± 68.0               | 0.179 ± 0.0459   | 46.8 ± 8.02    |
| Table above we are a CD DK as a second to a school of the size of the second se |                       |                 |                    |                          |                  |                |

