Development and Application of An Immunohistochemistry-based Clinical Assay for Evaluating Folate Receptor Alpha (FRα) Expression in the Clinical Setting

Abstract

3400A

Jianhua Zhao1, Alyssa LaBelle1, Olga Ab1, Krista Acosta2, Al Yates2, Yinhui Zhou1, Angela Romanelli1

ImmunoGen, Inc., Waltham MA (1) and Ventana Medical Systems, Inc., Tucson, AZ (2)

INTRODUCTION

A biomarker-based patient selection strategy, coupled with the co-development of a companion diagnostic, is key to the successful development of molecule/safety targeted cancer therapeutics.

FRα is a glycosylphosphatidylinositol-linked membrane protein. Expression of FRα is rare in normal tissues, but frequently elevated in several solid tumor types including epithelial ovarian cancer (EOC), endometrial cancer and lung adenocarcinoma. A murine monoclonal antibody (IMGN853) is an antibody drug conjugate (ADC) consisting of an anti-FRα antibody linked to DM4, a highly cytotoxic maytansinoid, via a cleavable disulfide linker. Preliminary evidence of clinical activity has been observed in patients receiving mitoxantrone soravtansine treatment in the first-in-human phase I clinical trial.

In this study, we report the development of an IHC-based FRα clinical assay to support patient selection for mitoxantrone soravtansine. To this end, an IHC compatible murine monoclonal antibody with high specificity for human FRα was generated (Clone FOLR1 1.1). The antibody was used to develop and optimize an IHC assay that covers a broad dynamic range of FRα expression, allowing discrimination among high, moderate and low levels of expression. This semi-quantitative assay has been analytically validated per CAP/CLIA guidelines and supports intended indications including ovarian cancer, endometrial cancer and NSCLC. Additional data generated using this assay demonstrated variation in levels of FRα expression between ovarian and endometrial cancer, as well as among different histological subtypes of endometrial cancer. Comparison between pairs of primary and metastatic samples from the same patients was also carried out to understand the utility as well as potential limitation of this assay. These data help us to refine the clinical development strategy as well as the strategy for patient selection.

Development and analytical validation of a robust clinical trial assay using FOLR1-2.1

Optimized assay condition

Scoring method

Specificity and dynamic range in cell lines with known FRα expression levels

Validation for three intended indications

Endometrial carcinoma with serous histology more likely to show high FRα expression

Ovarian cancer more likely to show high FRα expression than endometrial cancer

SUMMARY

1. An immunohistochemistry-compatible FRα-specific antibody was generated and selected from a panel of monoclonal antibodies for its ability to bind to denatured epitopes.
2. A robust IHC assay for detecting FRα expression in archival tumor tissue was developed and analytically validated, supporting patient selection in clinical trials.
3. Staining of tumor samples using this assay demonstrated that a greater proportion of ovarian samples exhibited high FRα expression than endometrial samples.
4. Among endometrial samples, a greater proportion of tumors with the serous histology exhibited high FRα expression than the other histological subtypes.
5. Comparison of paired primary/metastatic lessons from the same patients showed a strong correlation of FRα expression levels between the two, demonstrating consistency and utility of the assay irrespective of the sample source.
6. This assay is currently in use for patient selection in clinical trials for mitoxantrone soravtansine.

©2015 ImmunoGen, Inc., Waltham MA, USA